.. _avail_mappings: Geometry ======== Struphy models are implemented in curvilinear coordinates and can be run on a variaty of mapped domains. Besides analytical mappings, there are discrete spline mappings available (IGA approach). The (physical) domain :math:`\Omega \subset \mathbb R^3` is an open subset of :math:`\mathbb R^3`, defined by a diffeomorphism .. math:: F:(0, 1)^3 \to \Omega\,,\qquad \boldsymbol{\eta} \mapsto F(\boldsymbol \eta) = \mathbf x\,, mapping points :math:`\boldsymbol{\eta} \in (0, 1)^3 = \hat\Omega` of the (logical) unit cube to physical points :math:`\mathbf x \in \Omega`. The corresponding Jacobain matrix :math:`DF:\hat\Omega \to \mathbb R^{3\times 3}`, its volume element :math:`\sqrt g: \hat\Omega \to \mathbb R` and the metric tensor :math:`G:\hat\Omega \to \mathbb R^{3\times 3}` are defined by .. math:: DF_{i,j} = \frac{\partial F_i}{\partial \eta_j}\,,\qquad \sqrt g = |\textnormal{det}(DF)|\,,\qquad G = DF^\top DF\,. Only right-handed mappings (:math:`\textnormal{det}(DF) > 0`) are admitted. .. toctree:: :maxdepth: 2 :caption: Contents: subsections/domains-avail subsections/domains-base subsections/domains-kernels subsections/domains-utils