Fluid-kinetic hybrid models#
The bulk plasma is fluid, but there is also at least one kinetic species (e.g. energetic particles).
- class struphy.models.hybrid.LinearMHDVlasovCC[source]#
Bases:
StruphyModelHybrid linear MHD + energetic ions (6D Vlasov) with current coupling scheme.
\[\hat U = \hat v = \hat v_\textnormal{A} \,, \qquad \hat f_\textnormal{h} = \frac{\hat n}{\hat v_\textnormal{A}^3} \,.\]\[\begin{split}\begin{align} \textnormal{MHD}\,\, &\left\{\,\, \begin{aligned} &\frac{\partial \tilde{\rho}}{\partial t}+\nabla\cdot(\rho_0 \tilde{\mathbf{U}})=0\,, \\[2mm] \rho_0 &\frac{\partial \tilde{\mathbf{U}}}{\partial t} + \nabla \tilde p =(\nabla\times \tilde{\mathbf{B}})\times\mathbf{B}_0 + \mathbf{J}_0\times \tilde{\mathbf{B}} \color{blue} + \frac{A_\textnormal{h}}{A_\textnormal{b}} \frac{1}{\varepsilon} \left(n_\textnormal{h}\tilde{\mathbf{U}}-n_\textnormal{h}\mathbf{u}_\textnormal{h}\right)\times(\mathbf{B}_0+\tilde{\mathbf{B}}) \color{black}\,, \\[2mm] &\frac{\partial \tilde p}{\partial t} + (\gamma-1)\nabla\cdot(p_0 \tilde{\mathbf{U}}) + p_0\nabla\cdot \tilde{\mathbf{U}}=0\,, \\[2mm] &\frac{\partial \tilde{\mathbf{B}}}{\partial t} = \nabla\times(\tilde{\mathbf{U}} \times \mathbf{B}_0)\,,\qquad \nabla\cdot\tilde{\mathbf{B}}=0\,, \end{aligned} \right. \\[2mm] \textnormal{EPs}\,\, &\left\{\,\, \begin{aligned} &\quad\,\,\frac{\partial f_\textnormal{h}}{\partial t}+\mathbf{v}\cdot\nabla f_\textnormal{h} + \frac{1}{\varepsilon} \left[\color{blue} (\mathbf{B}_0+\tilde{\mathbf{B}})\times\tilde{\mathbf{U}} \color{black} + \mathbf{v}\times(\mathbf{B}_0+\tilde{\mathbf{B}})\right]\cdot \frac{\partial f_\textnormal{h}}{\partial \mathbf{v}} =0\,, \\[2mm] &\quad\,\,n_\textnormal{h}=\int_{\mathbb{R}^3}f_\textnormal{h}\,\textnormal{d}^3 \mathbf v\,,\qquad n_\textnormal{h}\mathbf{u}_\textnormal{h}=\int_{\mathbb{R}^3}f_\textnormal{h}\mathbf{v}\,\textnormal{d}^3 \mathbf v\,, \end{aligned} \right. \end{align}\end{split}\]where \(\mathbf{J}_0 = \nabla\times\mathbf{B}_0\) and
\[\varepsilon = \frac{1}{\hat \Omega_{\textnormal{c,hot}} \hat t}\,,\qquad \textnormal{with} \qquad\hat \Omega_{\textnormal{c,hot}} = \frac{Z_\textnormal{h}e \hat B}{A_\textnormal{h} m_\textnormal{H}}\,.\]Propagators (called in sequence):
- class EMFields[source]#
Bases:
FieldSpecies
- class MHD[source]#
Bases:
FluidSpecies
- class EnergeticIons[source]#
Bases:
ParticleSpecies
- generate_default_parameter_file(path=None, prompt=True)[source]#
Generate a parameter file with default options for each species, and save it to the current input path.
The default name is params_<model_name>.yml.
- Parameters:
path (str) – Alternative path to getcwd()/params_MODEL.py.
prompt (bool) – Whether to prompt for overwriting the specified .yml file.
- Returns:
params_path – The path of the parameter file.
- Return type:
str
- class struphy.models.hybrid.LinearMHDVlasovPC(turn_off: tuple[str, ...] = (None,))[source]#
Bases:
StruphyModelHybrid linear MHD + energetic ions (6D Vlasov) with pressure coupling scheme.
\[\hat U = \hat v =: \hat v_\textnormal{A, bulk} \,, \qquad \hat f_\textnormal{h} = \frac{\hat n}{\hat v_\textnormal{A}^3} \,,\qquad \hat{\mathbb{P}}_\textnormal{h} = A_\textnormal{h}m_\textnormal{H}\hat n \hat v_\textnormal{A}^2\,,\]Implemented equations:
\[\begin{split}\begin{align} \textnormal{MHD} &\left\{ \begin{aligned} &\frac{\partial \tilde{\rho}}{\partial t}+\nabla\cdot(\rho_0 \tilde{\mathbf{U}})=0\,, \\ \rho_0 &\frac{\partial \tilde{\mathbf{U}}}{\partial t} + \nabla \tilde p + \frac{A_\textnormal{h}}{A_\textnormal{b}} \nabla\cdot \tilde{\mathbb{P}}_{\textnormal{h},\perp} =(\nabla\times \tilde{\mathbf{B}})\times\mathbf{B}_0 + \mathbf{J}_0\times \tilde{\mathbf{B}} \,, \qquad \mathbf{J}_0 = \nabla\times\mathbf{B}_0\,, \\ &\frac{\partial \tilde p}{\partial t} + \nabla\cdot(p_0 \tilde{\mathbf{U}}) + \frac{2}{3}\,p_0\nabla\cdot \tilde{\mathbf{U}}=0\,, \\ &\frac{\partial \tilde{\mathbf{B}}}{\partial t} - \nabla\times(\tilde{\mathbf{U}} \times \mathbf{B}_0) = 0\,, \end{aligned} \right. \\[2mm] \textnormal{EPs}\,\, &\left\{\,\, \begin{aligned} &\quad\,\,\frac{\partial f_\textnormal{h}}{\partial t} + (\mathbf{v} + \tilde{\mathbf{U}}_\perp)\cdot \nabla f_\textnormal{h} + \left[\frac{1}{\epsilon}\, \mathbf{v}\times(\mathbf{B}_0 + \tilde{\mathbf{B}}) - \nabla \tilde{\mathbf{U}}_\perp\cdot \mathbf{v} \right]\cdot \frac{\partial f_\textnormal{h}}{\partial \mathbf{v}} = 0\,, \\ &\quad\,\,\tilde{\mathbb{P}}_{\textnormal{h},\perp} = \int \mathbf{v}_\perp\mathbf{v}^\top_\perp f_\textnormal{h} d\mathbf{v} \,, \end{aligned} \right. \end{align}\end{split}\]where
\[\epsilon = \frac{\hat \omega}{2 \pi \, \hat \Omega_{\textnormal{c,hot}}} \,,\qquad \textnormal{with} \qquad\hat \Omega_{\textnormal{c,hot}} = \frac{Z_\textnormal{h}e \hat B}{A_\textnormal{h} m_\textnormal{H}}\,.\]Propagators (called in sequence):
- class EnergeticIons[source]#
Bases:
ParticleSpecies
- class EMFields[source]#
Bases:
FieldSpecies
- class MHD[source]#
Bases:
FluidSpecies
- generate_default_parameter_file(path=None, prompt=True)[source]#
Generate a parameter file with default options for each species, and save it to the current input path.
The default name is params_<model_name>.yml.
- Parameters:
path (str) – Alternative path to getcwd()/params_MODEL.py.
prompt (bool) – Whether to prompt for overwriting the specified .yml file.
- Returns:
params_path – The path of the parameter file.
- Return type:
str
- class struphy.models.hybrid.LinearMHDDriftkineticCC(turn_off: tuple[str, ...] = (None,))[source]#
Bases:
StruphyModelHybrid linear ideal MHD + energetic ions (5D Driftkinetic) with current coupling scheme.
\[\hat U = \hat v =: \hat v_\textnormal{A, bulk} \,, \qquad \hat f_\textnormal{h} = \frac{\hat n}{\hat v_\textnormal{h} \hat \mu \hat B} \,,\qquad \hat \mu = \frac{A_\textnormal{h} m_\textnormal{H} \hat v_\textnormal{h}^2}{\hat B} \,.\]\[\begin{split}\begin{align} \textnormal{MHD} &\left\{ \begin{aligned} &\frac{\partial \tilde{\rho}}{\partial t}+\nabla\cdot(\rho_{0} \tilde{\mathbf{U}})=0\,, \\ \rho_{0} &\frac{\partial \tilde{\mathbf{U}}}{\partial t} - \tilde p\, \nabla = (\nabla \times \tilde{\mathbf{B}}) \times \mathbf{B} + (\nabla \times \mathbf B_0) \times \tilde{\mathbf{B}} + \frac{A_\textnormal{h}}{A_\textnormal{b}} \left[ \frac{1}{\epsilon} n_\textnormal{gc} \tilde{\mathbf{U}} - \frac{1}{\epsilon} \mathbf{J}_\textnormal{gc} - \nabla \times \mathbf{M}_\textnormal{gc} \right] \times \mathbf{B} \,, \\ &\frac{\partial \tilde p}{\partial t} + \nabla\cdot(p_0 \tilde{\mathbf{U}}) + \frac{2}{3}\,p_0\nabla\cdot \tilde{\mathbf{U}}=0\,, \\ &\frac{\partial \tilde{\mathbf{B}}}{\partial t} - \nabla\times(\tilde{\mathbf{U}} \times \mathbf{B}) = 0\,, \end{aligned} \right. \\[2mm] \textnormal{EPs}\,\, &\left\{\,\, \begin{aligned} \quad &\frac{\partial f_\textnormal{h}}{\partial t} + \frac{1}{B_\parallel^*}(v_\parallel \mathbf{B}^* - \mathbf{b}_0 \times \mathbf{E}^*)\cdot\nabla f_\textnormal{h} + \frac{1}{\epsilon} \frac{1}{B_\parallel^*} (\mathbf{B}^* \cdot \mathbf{E}^*) \frac{\partial f_\textnormal{h}}{\partial v_\parallel} = 0\,, \\ & n_\textnormal{gc} = \int f_\textnormal{h} B_\parallel^* \,\textnormal dv_\parallel \textnormal d\mu \,, \\ & \mathbf{J}_\textnormal{gc} = \int \frac{f_\textnormal{h}}{B_\parallel^*}(v_\parallel \mathbf{B}^* - \mathbf{b}_0 \times \mathbf{E}^*) \,\textnormal dv_\parallel \textnormal d\mu \,, \\ & \mathbf{M}_\textnormal{gc} = - \int f_\textnormal{h} B_\parallel^* \mu \mathbf{b}_0 \,\textnormal dv_\parallel \textnormal d\mu \,, \end{aligned} \right. \end{align}\end{split}\]where
\[\begin{split}\begin{align} B^*_\parallel = \mathbf{b}_0 \cdot \mathbf{B}^*\,, \\[2mm] \mathbf{B}^* &= \mathbf{B} + \epsilon v_\parallel \nabla \times \mathbf{b}_0 \,, \\[2mm] \mathbf{E}^* &= - \tilde{\mathbf{U}} \times \mathbf{B} - \epsilon \mu \nabla (\mathbf{b}_0 \cdot \mathbf{B}) \,, \end{align}\end{split}\]with the normalization parameter
\[\epsilon = \frac{1}{\hat \Omega_\textnormal{c,hot} \hat t} \,, \qquad \hat \Omega_\textnormal{c,hot} = \frac{Z_\textnormal{h} e \hat B}{A_\textnormal{h} m_\textnormal{H}} \,.\]Propagators (called in sequence):
- class EnergeticIons[source]#
Bases:
ParticleSpecies
- class EMFields[source]#
Bases:
FieldSpecies
- class MHD[source]#
Bases:
FluidSpecies
- generate_default_parameter_file(path=None, prompt=True)[source]#
Generate a parameter file with default options for each species, and save it to the current input path.
The default name is params_<model_name>.yml.
- Parameters:
path (str) – Alternative path to getcwd()/params_MODEL.py.
prompt (bool) – Whether to prompt for overwriting the specified .yml file.
- Returns:
params_path – The path of the parameter file.
- Return type:
str
- class struphy.models.hybrid.ColdPlasmaVlasov[source]#
Bases:
StruphyModelCold plasma hybrid model.
\[\hat v = c\,,\qquad \hat E = c \hat B \,,\qquad \hat f = \frac{\hat n}{c^3} \,.\]\[\begin{split}&\frac{\partial f}{\partial t} + \mathbf{v} \cdot \, \nabla f + \frac{1}{\varepsilon_\textnormal{h}}\Big[ \mathbf{E} + \mathbf{v} \times \left( \mathbf{B} + \mathbf{B}_0 \right) \Big] \cdot \frac{\partial f}{\partial \mathbf{v}} = 0 \,, \\[2mm] \frac{1}{n_0} &\frac{\partial \mathbf j_\textnormal{c}}{\partial t} = \frac{1}{\varepsilon_\textnormal{c}} \mathbf E + \frac{1}{\varepsilon_\textnormal{c} n_0} \mathbf j_\textnormal{c} \times \mathbf B_0\,, \\[2mm] &\frac{\partial \mathbf B}{\partial t} + \nabla\times\mathbf E = 0\,, \\[2mm] -&\frac{\partial \mathbf E}{\partial t} + \nabla\times\mathbf B = \frac{\alpha^2}{\varepsilon_\textnormal{h}} \left( \mathbf j_\textnormal{c} + \int_{\mathbb{R}^3} \mathbf{v} f \, \text{d}^3 \mathbf{v} \right) \,,\end{split}\]where \((n_0,\mathbf B_0)\) denotes a (inhomogeneous) background and
\[\alpha = \frac{\hat \Omega_\textnormal{p,cold}}{\hat \Omega_\textnormal{c,cold}}\,, \qquad \varepsilon_\textnormal{c} = \frac{1}{\hat \Omega_\textnormal{c,cold} \hat t}\,, \qquad \varepsilon_\textnormal{h} = \frac{1}{\hat \Omega_\textnormal{c,hot} \hat t} \,.\]At initial time the Poisson equation is solved once to weakly satisfy the Gauss law:
\[\begin{align} \nabla \cdot \mathbf{E} & = \nu \frac{\alpha^2}{\varepsilon_\textnormal{h}} \int_{\mathbb{R}^3} f \, \text{d}^3 \mathbf{v}\,. \end{align}\]Propagators (called in sequence):
- class EMFields[source]#
Bases:
FieldSpecies
- class ThermalElectrons[source]#
Bases:
FluidSpecies
- class HotElectrons[source]#
Bases:
ParticleSpecies
- generate_default_parameter_file(path=None, prompt=True)[source]#
Generate a parameter file with default options for each species, and save it to the current input path.
The default name is params_<model_name>.yml.
- Parameters:
path (str) – Alternative path to getcwd()/params_MODEL.py.
prompt (bool) – Whether to prompt for overwriting the specified .yml file.
- Returns:
params_path – The path of the parameter file.
- Return type:
str